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Elastostatic Model of a New Hybrid Minimally-Invasive-Surgery Robot
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Abstract—In this paper, the elastostatic model of a novel
hybrid robot for minimally invasive surgery is presented.
The parallel robot has two identical limbs of SPU type and
a RRR limb which allows the end-effector to accomplish
spherical motion. The robot has three actuated joints for
the parallel architecture and one for the translation along
the longitudinal axis of the surgical instrument. The par-
allel manipulator provides remote centre of motion located
at the incision point of the patient’s body. First, the kine-
matics is solved in closed-form for the forward and inverse
positioning problems, then elastostatic analysis of the par-
allel manipulator is modelled considering a system of flex-
ible links and rigid bodies connected by means of joints.
Local stiffness matrices are derived and finally combined to
obtain the global stiffness matrix of the robotic system. Re-
sults are compared with those coming from commercial FE
software for validation. Positioning and orienting errors
due to flexibility are evaluated in order to improve quality
in positioning and tracking of trajectories. Finally, some
extensions to sensitivity analysis are provided to demon-
strate that the elastostatic model can be used to improve
the performance of the robot.

Keywords: minimally invasive surgery (MIS); hybrid manipulator;
elastostatics; robot kinematics;

I. Introduction

The minimally invasive technique was adopted in sur-
gical operations in the last two decades of the 20th cen-
tury. In minimally invasive surgery the instruments and
camera are inserted into the human body through small in-
cisions on the abdomen and operated inside the patient’s
body. Long surgical instruments, held and manoeuvred by
surgeon’s hands, are used in order to reach the operating
area in the abdomen. Thus, the minimally invasive tech-
nique could be considered some kind of remote manipula-
tion and the introduction of robots in this field was a logical
enhancement to the traditional surgical manipulation. Us-
ing robots in the minimally invasive surgery allows filter-
ing the trembling of surgeon’s hand and scaling its move-
ments. This implies that the robotic assisted surgery helps
to perform more complex surgical procedures with a high
accuracy. For that reason, recently, a great amount of re-
search has been carried out and many medical robots have
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been proposed for use in the minimally invasive surgery.
Both serial and parallel manipulators have been developed
for surgical applications. The abdomen small incision re-
stricts the motion of the instrument and acts as a pivoting
point. Thus, only four degrees of freedom are possible,
three rotations around three intersecting axes in the pivot-
ing point and a translation along the longitudinal axis of
the surgical tool. In general, this desired motion could be
achieved by mechanically restriction or by properly con-
trolling a manipulator with full mobility. This restricted
motion in the minimally invasive surgery is best described
by the term “Remote Centre-of-Motion”(RCM) [1]. It is a
point where one or more rotations are centred and located
outside the mechanism itself. RCM can be enforced by
different types of mechanisms. Zeus surgical system uses
isocentre-based RCM mechanism, which can be described
as a “pin-in-ring” joint [2]. Other robotically assisted sur-
gical systems such as da Vinci [3] and BlueDRAGON [4],
use parallelograms for RMC mechanism. Another RCM
mechanism is based on a spherical mechanism. Both serial
and parallel robots with implemented spherical kinematic
chains have been proposed for use as surgical robots. Open
kinematic chains with spherical mechanism have been sug-
gested for application in minimally invasive surgery [5],
[6], [7]. Parallel manipulators with spherical linkages have
been also proposed especially for application in laparo-
scopic surgery [8], [9]. Other interesting parallel manipu-
lators providing RCM and designed for minimally invasive
surgery are presented in [10] and [11]. Apart from the me-
chanical RCM, the so called controllable (programmable)
RCM is used in the robots for minimally invasive surgery,
as well. Obviously, the general type parallel manipulators
used in the robot assisted minimally invasive surgery need
to provide programmable RCM. For example, in the par-
allel manipulator of the Gough-Stewart type developed for
minimally invasive surgery, the RCM is provided by the
control system (programmable RCM) [12]. Some other
parallel mechanisms have been also proposed for applica-
tion in laparoscopy [13], [14]. A type of hybrid parallel
manipulator and its kinematics are presented in [15]. The
programmable RCM provides motion flexibility since the
robot has redundant degrees of freedom. The drawback
of the programmable RCM is the complexity of the robot
design and control system which increases the error prob-
ability. The mechanical RCM are considered to be more
suitable for the robotic assisted minimally invasive surgery,



due to the fewer degrees of freedom, simpler control system
and safer manipulation. The robots providing mechanical
RCM are usually rigid, cost-effective and easy controllable.
The serial and parallel spherical manipulators provide exact
spherical movement at the incision point. The drawback for
a parallel spherical manipulator is the requirement for pre-
cise manufacturing and alignment of the joints, and also the
possibility of clogging.

The process of the robot design includes the determina-
tion of the elastostatic properties. The established elasto-
static model allows the designer to analyse different options
of the robot with various design parameters.

In this paper, the kinematic and elastostatic model of
a novel hybrid robot consisting of a parallel manipulator
and an additional translational joint attached to the moving
platform is presented. This robot, firstly proposed in [16],
possesses the ability of the spherical linkage to provide re-
mote centre of motion and overcomes some drawbacks of
the parallel spherical manipulators, such as a possible clog-
ging and bulky structure. The stiffness of the robot is mod-
elled and the elastostatic model is developed and presented,
which represents the main point of this work. The proposed
model is compared to Ansys c© to validate results. The er-
ror positioning analysis is evaluated for the boundaries of
different constant orientation workspaces. The values of
linear and angular displacements due to deformation are
compared with limit values coming from the medical lit-
erature. Finally, we propose some extensions to sensitivity
analysis to demonstrate that the proposed elastostatic model
can improve the performance of the robot in terms of preci-
sion limiting the deformations due to static wrenches acting
upon its surgical tool.

II. Robot Kinematics
The considered novel hybrid robot consists of a parallel

manipulator and an additional translational joint attached to
the moving platform [16]. A CAD model of the considered
hybrid robot is shown in Fig. 1. The parallel manipulator
provides RCM of the end-effector and the RCM is at the
incision point of the patient’s body. The hybrid robot has
four degrees of freedom, three for the parallel manipulator
and a fourth degree of freedom (a translation along the lon-
gitudinal axis of the surgical instrument) is provided by an
additional prismatic joint attached to the moving platform.

A. Kinematic Scheme of the Robot
The parallel manipulator consists of three limbs, two

of them (A1B1 and A2B2) have identical SPU (spherical-
prismatic-universal) joints structure and the third (A3B3) is
a RRR spherical linkage, i.e. the axes of all three revolute
joints (R) of this limb intersect in a single point (Fig. 2).
Each limb has one driven joint, respectively. The prismatic
joints of the SPU limbs and the second (middle) revolute
joint of the RRR limb are driven. In addition to these three
active joints for the parallel mechanism, an active prismatic

Fig. 1. A CAD model of the minimally-invasive-surgery parallel robot
with non-identical limbs.

joint allowing translation of the end-effector along the line
OB3 is added. The axis of the revolute joint (A3), attached
to the base platform (BP), is perpendicular to the plane of
the base platform (A1A2A3) and the axis of the revolute
joint (B3), attached to the moving platform (MP), is perpen-
dicular to the plane of the moving platform (B1B2B3). The
origins of the reference (base) coordinate system OXYZ
and the coordinate systems {1}, {2} and {3} coincide with
the intersection point of the three axes of the revolute joints
of the spherical RRR limb. The Zi-axes (i = 1, 2, 3) are
along the axes of the three revolute joints, respectively. The
O4X4Y4Z4 coordinate system is attached to the MP and
Z4-axis is along the direction of translation of the last pris-
matic joint. The angles of rotation (θ1, θ2, and θ3) about
the three Zi (i = 1, 2, 3) -axes are chosen for parameters
for kinematic modelling of the parallel mechanism. Using
the D-H (Denavit-Hartenberg) notation, the transformation
of the coordinate systems can be written as a product of the
following rotation (R) and translation (T) matrices

Qi = R(αi−1)T (ai−1)R(θi)T (di) (1)

Then, the transformation matrix Qi can be written as

Qi =


Cθi −Sθi 0 ai−1

Cαi−1Sθi Cαi−1Cθi −Sαi−1 −diSαi−1
Sαi−1Sθi Sαi−1Cθi Cαi−1 diCαi−1

0 0 0 1

 ,
where Cθi = cos θi; Sθi = sin θi; Cαi−1 = cosαi−1;



Fig. 2. Kinematic scheme of the manipulator.

i αi−1 ai−1 di θi
1 -π/2 0 0 θ1
2 α1 0 0 θ2
3 α2 0 0 θ3
4 0 0 d4 0

TABLE I. D-H Parameters

Sαi−1 = sinαi−1.

The D-H parameters are given in Table I, where
α1, α2, d4 are constant design parameters and θ1, θ2, θ3
are joint variables (αi is the twist angle between two adja-
cent joint axes, and it is required to rotate the Zi axis into
alignment with the Zi+1 axis about the positive Xi axis ac-
cording to the right-hand rule; d4 =‖OO4‖).

Then, the transformation matrix for the considered robot
manipulator can be written as follows:

Q = Q1Q2Q3Q4 (2)

B. Forward Kinematic Problem
The forward position problem for the parallel manipula-

tor is presented briefly here, since more details can be found
in [16]. This problem can be resolved using the following

constrained equations:

Li =‖OAi −OBi‖, i = 1, 2, (3)

where ‖...‖ denotes the Euclidean norm; OBi = Q·(O4Bi);
O4Bi is a vector given in theO4X4Y4Z4 coordinate system.
The vectors OAi and O4Bi, which are determined by the
design of the manipulator, are as follows:

OA1 = (−xA, yA, zA, 1)T ;
OA2 = (xA, yA, zA, 1)

T ;

OA3 = (0, yA, 0, 1)
T ;

O4B1 = (−xB , yB , 0, 1)T ;
O4B2 = (xB , yB , 0, 1)

T ;

O4B3 = (0, 0, 0, 1)T .

Expanding Eq. (3) leads to the following equations:

OA2
1 + OB2

1 − 2OBT1 OA1 − L2
1 = 0 (4)

OA2
2 + OB2

2 − 2OBT2 OA2 − L2
2 = 0 (5)

The two leg lengths (L1 and L2) and the angle θ2 are the
given parameters for the forward problem of the parallel
mechanism. One might observe that the fourth parameter,
the translation along the O4Z4, is also given, but in this
case it is not of significant importance for determining the
forward position problem of the parallel manipulator. Ex-
panding Eqs. (4) and (5) we get the following two equations
for the unknown variables θ1 and θ3:

pi1c1c3 + pi2c1s3 + pi3s1c3 + pi4s1s3 (6)
+pi5c1 + pi6s1 + pi7c3 + pi8s3 + pi9 = 0,

where ci = cos θi, si = sin θi (i=1,2);
pi1, pi2, . . . , pi9 (i=1,2) are coefficients which are deter-
mined by the design and input parameters. Because of the
limited space of the paper they are not listed here.

Substituting sin θi and cos θi i=1,3 with the tangent-half
formulas in Eq. (6) we get two equations in two unknowns.
An eight-order polynomial in one unknown is obtained after
elimination of one of these two unknowns [16].

C. Inverse Kinematic Problem
Due to the specific structure of the manipulator, the

position of the end-effector determines the unit vector
along the O3Z3 (O4Z4, respectively) axis, which is actu-
ally the third column of the transformation matrix Q =
[qij ], i=1,. . . ,4; j=1,. . . ,4. Let p = [px, py, pz]

T be a po-
sition vector of a point of the end-effector, which lies on the
O4Z4 axis. Then the unit vector along the O4Z4 axis is:

up =
−p√

p2x + p2y + p2z



Actually, this unit vector represents the third column of the
rotation matrix. In order to completely construct the trans-
formation matrix Q another component has to be given. In
this case, the angle ψ between the projection of the O4X4

axis on the XY plane and OX axis is specified. There are
several ways to construct the orientation matrix. Here, we
use the Z-Y-Z Euler angles and in this case the rotation ma-
trix can be written as

IR = RotZ(φ)RotY (β)RotZ(δ) (7)

or

IR =

CφCβCδ − SφSδ −CφCβSδ − SφCδ CφSβ
SφCβCδ + CφSδ −SφCβSδ + CφCδ SφSβ
−SβCδ SβSδ Cβ

 ,
where S and C stand for sin and cos, respectively, for the
angles given as subscripts;

For the inverse problem, the given parameters are the
third column of the orientation matrix [q13 q23 q33]

T and
the angle ψ, therefore, the orientation matrix needs to be
constructed. Then, the angles φ and β can be obtained from
the third column of the orientation matrix:

φ = arctan

(
q23
q13

)
,

β = Atan2 (q13 cosφ + q23 sinφ, q33) .

Now, considering the given angle ψ between the projec-
tion of the O4X4 axis on the XY plane and OX axis, the
following two equations for the unknown angle δ can be
written

R11 −
√
1−R2

31 cosψ = 0,

R21 −
√
1−R2

31 sinψ = 0,

where R11, R21 and R31 are components of the orientation
matrix IR ( Eq.7).

Solving the above two equations together we obtain:

δ = Atan2 (M,N) ,

where

M = − sinα cosψ + sinψ cosα;

N =
sinψ sinα+ cosα cosψ

cosβ
.

The coordinates of the origin (p. O4) of the coordinate
system O4X4Y4Z4 can be obtained as:

OO4 = yA · up.

Then, the transformation matrix Q can be completed. Now,
the leg lengths L1 and L2 directly comes from Eq.(3). The

third driven parameter θ2 is obtained from the following
equation:

θ2 = ±Atan2
(√

1−D2, D
)

where

D =
(cosα1 cosα2 − q23)

sinα1 sinα2
.

This completes the solution of the inverse problem. Ob-
taining the value of the fourth driven parameter, i.e., the
translation along O4X4 axis is trivial and straightforward.
In addition to the above- mentioned solution of the inverse
problem, it is useful to get the remaining two joint angles θ1
and θ3 in order to determine the configuration of the robot.
From the expressions of q13 and q33 in Eq. (2) the following
formula for the angle θ1 is derived:

θ1 = Atan2 (−k1q33 + k2q13, k1q13 + k2q33) ,

where k1 = sinα2 sin θ2; k2 = cosα1 sinα2 cos θ2 +
sinα1 cosα2.
Similarly, the angle θ3 can be obtained from q11 and q21
of Eq. 2, i.e. θ3 = Atan2 (k3V, k3W ) , where: k3 =

1
Sθ1Sθ2Sα2−Cα1Sα2Cθ1Cθ2−Sα1Cα2Cθ1

;

V = (Sα1Sθ2)q11 + (Sθ1Sθ2Cα1 − Cθ1Cθ2)q21
W= (−Sα1Cα2Cθ2 − Cα1Sα2)q11 +

(−Cα1Cα2Sθ1Cθ2 − Cα2Cθ1Sθ2 + Sα1Sα2Sθ1)q21

where S and C denote sin and cos of the corresponding
angle.

Using the derived solutions of the inverse position prob-
lem, the boundaries of the workspace with constant orien-
tations are obtained for this hybrid robot in [16]. These
boundary curves are used in the numerical examples for the
elastostatic model of the robot in the next sections of the
current paper. Being boundary curves, it should be pointed
out that they cross singularity. Singularity analysis of this
robot is presented in [17], where the geometric condition
for singularity has been obtained. This geometric condi-
tion leads to the derivation of the algebraic formulation of
the singularity surface of the robot. The singularities within
the workspace of the robot are shown ([17]).

The boundaries of the workspace are obtained for the fol-
lowing design parameters:
OA1 = (−0.20, 0.52, 0.56)T ; OA2 = (0.20, 0.52, 0.56)T ;
OA3 = (0, 0.52, 0)T ; O4B1 = (−0.1075, 0.05, 0)T ;
O4B2 = (0.1075, 0.05, 0)T ; O4B3 = (0, 0, 0)T ; α1 = 55o;
α2 = 43o; d4 = 0.52 m. The following constraints
on the motion are imposed in the workspace derivation:
Lmin = 0.30 m; Lmax = 0.58 m (minimum and maxi-
mum lengths of the SPU limbs); minimum angle between
each SPU limb and the plane of the base platform = 30o.



III. Nodal displacements and joint-matrices
To describe the elastostatic model of the robot we use

a linear formulation developed by Cammarata [18], based
on small displacements and Euler angles. For the robot in
exam we employ 3D straight Euler beams and 3D curved
Timoshenko beams.

Before introducing the stiffness model of the robot a
brief mathematical background is first recalled. A nodal
displacement array is a six-dimensional array with three
translational and three rotational displacements: u =[
ux uy uz uϕ uθ uψ

]T
.

Joints introduce kinematic constraints between two con-
secutive links. When FE are used to model links joint
constraints must be rewritten in terms of constraint equa-
tions between adjacent nodes. In particular, considering
two nodes, belonging to two consecutive links bonded by
a joint, it is possible to express the kinematic constraint
provided by the joint through an equation among displace-
ments: i.e.,

u2
1 = u1

2 + Hθ (8)

in which subscripts of nodal displacements are referred to
the link, while superscripts refer to one of the two end-
nodes of the link. The joint-matrix H and the array θ
depend on the joint type: the former containing unit vec-
tors indicating geometric axes, the latter including joint dis-
placements and rotations.

Here, we recall the joint-matrices necessary to study the
kinematic chains of the robot:
Revolute joint:

hR =

[
0
e

]
, θR = θ (9)

where e is the unit vector along the axis of the revolute joint
R and θ is the angle of rotation about the said axis.
Universal joint:

HU =

[
0 0
e1 e2

]
, θU =

[
θ1

θ2

]
(10)

where e1 and e2 are the unit vectors along the axes of the
universal joint U and θ1 and θ2 are the angles of rotation
about the axes of U.
Spherical joint:

HS =

[
0 0 0
e1 e2 e3

]
, θS =

 θ1

θ2

θ3

 (11)

where e1, e2 and e3 are the unit vectors along the axes of
the spherical joint S and θ1, θ2, and θ3 are the angles of
rotation about the axes of S.

The described constraint equations are used to consider
joints contribute to elastodynamics in a direct way, without
using Lagrangian multipliers to introduce joint constraints.

IV. Stiffness matrix determination
A. Rigid body - flexible body

The 12×12 stiffness matrix Ka of a rigid body connected
to a flexible body by means of a joint, with joint-matrix H,
has been obtained in [18]. Here, we recall its final expres-
sion:

Ka =

[
X1 X2

O 1

]T [
K1,1

2 K1,2
2

K2,1
2 K2,2

2

] [
X1 X2

O 1

]
(12)

where

X1 = G + HY1 (13a)
X2 = HY2 (13b)
Y1 = −(HTK1,1

2 H)−1HTK1,1
2 G (13c)

Y2 = −(HTK1,1
2 H)−1HTK1,2

2 (13d)

The matrix K2 is the stiffness matrix of the flexible body
while the matrix G expresses the rigid-body-displacement
of the node located at the joint position in terms of a refer-
ence node of the rigid body, i.e.,

G =

[
1 −D
O 1

]
(14)

where 1 and O, respectively, are the 3×3 identity- and zero-
matrices and D is the Cross-Product Matrix of the vector d
pointing from the reference node towards the joint node.

B. Flexible body - Rigid body
The dual counterpart of the previous case is the connec-

tion between a flexible and a rigid body through a joint. The
12× 12 stiffness matrix Kc is briefly recalled from [18]:

Kc =

[
1 O
X1 X2

]T [
K1,1

1 K1,2
1

K2,1
1 K2,2

1

] [
1 O
X1 X2

]
(15)

where

X1 = HY1 (16a)
X2 = G + HY2 (16b)
Y1 = −(HTK2,2

1 H)−1HTK2,1
1 (16c)

Y2 = −(HTK2,2
1 H)−1HTK2,2

1 G (16d)

with the same notation as before.

V. Stiffness analysis
The results of the previous section are used to achieve the

generalized stiffness matrices of the three limbs composing
the parallel architecture of the robot.

A. Limb SPU
Referring to Fig. 1, each limb of type SPU can be

thought as the combination, through a spherical joint S,
of the rigid BP to the flexible proximal link, the latter in



turn being coupled to the distal link by the actuated pris-
matic joint P. Finally, the distal link is connected to the
rigid MP through a universal joint U. Considering the ac-
tuated P locked at a given elongation, the serial connec-
tion of proximal and distal links can be substituted by three
beams with different sections and lengths and with stiff-
ness matrices Kij , where i denotes the limb number and j
refers to one of the three parts in which a limb is divided
for the stiffness analysis. Starting from the base and refer-
ring to the section of the prismatic joints shown in Fig. 1,
the first beam has a hollow circular section with outer and
inner diameters respectively equal to those of the proxi-
mal and distal links. The rigid-flexible connection between
the beam and the BP can be modeled using the case rigid
body-flexible body of the previous section. The general-
ized matrix Kai(H

Si ,GAi
,Ki1) that we obtain depends

on: the joint-matrix HSi of the spherical joint at point Ai,
the rigid-body-displacement matrix GAi

and the stiffness
matrix Ki1 of the first beam. For computational purposes it
is convenient to choose GAi

≡ 16, meaning that the refer-
ence point of the base is set at point Ai. The second beam
is clamped to the first and third beam at its extremities. Its
cross section is circular with diameter equal to that of the
proximal link.

Finally, the third beam has a circular cross section with
diameter equal to that of the distal link and it is clamped to
the second beam at one extremity and to the MP at the other
extremity through a universal joint at point Bi. The flexible
body-rigid body case can be employed obtaining a stiffness
matrix Kci(H

Ui ,GBi
,Ki3) depending on the joint-matrix

HUi of the universal joint at pointBi and on the rigid-body-
displacement matrix GBi

. The latter is built considering the
reference node of the MP at point B3.

B. Limb R̂R̂R̂
The third limb of the robot provides a spherical motion to

the end-effector; it is composed of two curved links joined
by revolute joints with intersecting axes at the common ori-
gin O. In order to find the generalized stiffness matrix of
the limb, we use curved beams. Here, we employ the model
of Choi and Lim describing a two-node Timoshenko’s beam
with constant strain fields [19]. The method is based on ele-
ments with strain functions assumed independently in order
to avoid locking phenomena. Similar formulation, based on
modified isoparametric elements can be found in the works
of Prathap et al. [20] or Palaninathan et al. [21].

Let us briefly recall the mathematical background needed
to obtain the stiffness matrix Kp of a curved beam into its
local frame; the reader is referred to [19] for a complete
description. Given a beam of mean radius R, cross-section
area A, Young’s modulus E, shear modulus G, shear cor-
rection factor β2 and moments of inertia Ix, Iy and Iz as
referred to the local curvilinear coordinate system xi − zi
shown in Fig. 3, we can express the stress-strain relations
by means of the matrix Ds, defined as

Z

X

R

zi xi

Φ

Fig. 3. Local Cartesian frame and curvilinear frame.

Ds = diag
(
AE, β2GA, β2GA,GIx, EIy, EIz

)
(17)

Now, introducing the stain mode matrix Φ1 and the rigid
body mode matrix Φ2:

Φ1 =


0 −R2φ R 0 0 0
0 0 0 0 R2φ Rφ
R R2 0 0 0 0
0 0 0 −R 0 0
0 Rφ 0 0 0 0
0 0 0 0 R 0

 (18)

Φ2 =



1 −s(φ) c(φ) 0 0 0
0 0 0 1 c(φ) s(φ)
0 c(φ) s(φ) 0 0 0

0 0 0 0 − c(φ)R − s(φ)R
− 1
R 0 0 0 0 0

0 0 0 0 − s(φ)R
c(φ)
R


(19)

the local stiffness matrix Kp can be written as

Kp = R (φf − φi)T2A
−T
φ BTDsBA−1φ TT

2 (20)

in which, denoting with φi and φf the initial and final an-
gles of the curved beam and by introducing βi = π/2− φi
and βf = π/2− φf , we set the following matrices:

Aφ =

(
Φ1(φi) Φ2(φi)
Φ1(φf ) Φ2(φf )

)
(21)

B =


1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0


(22)

T2 =


T2i(βi) O O O

O T2i(βi) O O
O O T2i(βf ) O
O O O T2i(βf )


(23)



Fig. 4. Total deformations of the robot obtained using Ansys c©. Pose
parameters: {L1, L2, θ2} = {0.5195, 0.4984, 144.37◦}.

The rotation matrix T2i is a canonical y-axis rotation ma-
trix used to express the local curvilinear frame rotated of
the generic angle β with respect to the local Cartesian frame
X − Z of Fig. 3.

Once the stiffness matrix of the single curved beam is
defined, one can build the generalized stiffness matrix of
the limb. The first link, here referred to as proximal link,
is linked to the BP by means of a revolute joint R1. Re-
calling the rigid body-flexible body case, we can write
Ka(h

R1 ,GA3
,Kp), with obvious meaning of all symbols.

Even in this case it would be convenient to put GA3 = 16.
The second revolute joint R2 is actuated, therefore it is

considered locked at a given configuration. The second
curved beam, or distal link, is linked to the MP through the
revolute joint R3. Recalling the flexible body-rigid body
case we write Kc(h

R3 ,GB3
,Kd), in which GB3

= 1 be-
cause the node of the joint R3 coincides with the reference
node of the MP, and Kd is the stiffness matrix of the distal
link. Notice that both Kp and Kd must be expressed into
the global frame of reference.

C. Generalized Stiffness Matrix of the Robot
The generalized stiffness matrix of the robot can be

found exploiting the results from the previous subsections.
In order to improve the stiffness behaviour of the curved
link, as already outlined in [19], we employ six FE to de-
scribe a single curved link. Seventeen nodes are first used to
build the generalized stiffness matrix of the robot, then the
fixed node of the BP is deleted by imposing boundary con-
ditions, thereby obtaining a final model with sixteen nodes.

The final 96 × 96 generalized stiffness matrix is not
shown for the sake of conciseness; further reading on the as-
sembling method and other representative applications can
be found in [22].

VI. Numerical results
In order to verify the proposed elastostatic method we

applied a wrench at the point B3. Hereafter, we will refer

TABLE II. Comparison to Ansys results: statics.
s ξ

Model 6.7308E-5 2.632E-4
Ansys 2.1510E-5 6.129E-5

Fig. 5. Positioning error along the boundaries of workspaces with differ-
ent constant orientations within the range [−60◦, 60◦] expressed in the
joint space of the three revolute joints. Values of s, expressed in [m], are
reported on the legend bar.

to the said wrench for the numerical results. Considering
the interaction between the surgery tool and the skin we
considered an axial force of 50 N acting along the transla-
tional direction of the end-effector and a transverse force of
5 N normal to the end-effector. A torque of 2.7 Nm, along
the axis Y4 that lies on the plane of the MP and normal to
Z4, has been also taken into account considering that tissue
interaction forces induce moments on the MP.

In order to validate the model we performed a static anal-
ysis using Ansys c©. For our purposes we measured the
displacement s and the rotation angle ξ of the MP, due to
the deformation, following the approach proposed in [23].
The total deformations coming from the application of the
static wrench, discussed above, are reported in Fig. 4 and
compared to the proposed model results in Tab. II. Some
discrepancies occur as we compare a three dimensional
model with tetrahedral FE with a numerical model based
on beams. Besides, joint stiffness is not considered into the
proposed model as well as MP flexibility. Moreover, struc-
tural elements as ribs, holes and fillets modify the global
stiffness of the robot and are difficult to be taken into ac-
count in a model with simplified geometries.

We calculated the error positioning analysis along the
boundaries of workspaces with different constant orienta-
tions within the range [−60◦, 60◦]. A constant orientation
of the MP means that the angle ψ between the projection of
the axis O4X4 on the plane OXY and the axis OX is kept
constant. We refer the reader to [16] for more details on the
robot’s workspace.



Fig. 6. Orienting error along the boundaries of workspaces with different
constant orientations within the range [−60◦, 60◦] expressed in the joint
space of the three revolute joints. Values of ξ, expressed in [rad], are
reported on the legend bar.

Based on data reported in medical literature [24], we
have imposed a maximum error of 0.5 [mm] for the dis-
placement s and a maximum error of 0.002 [rad] for the ro-
tation angle ξ. These values change depending on the appli-
cations but position sensors are usually required to measure
the tip of a surgical device in the range of 1–2 [mm] and
orientation ranging from 0.5 to 2 [degrees]. We decided to
go below these values because we consider only the robot’s
structure deformation without including the tip deflection.

The two Figures 5&6 show the errors, coming from the
application of the static wrench, that are above the limit
values. Each point of the boundaries is detected by a small
colored cube in which the color indicates the positioning
error, either linear or angular, following the color map of the
legend bar. Some voids reveals points of the boundary in
which the errors are above the limit values that we imposed.

To improve the performance of the robot, limiting the
deformations of its end-effector, we carried out a sensi-
tivity analysis considering changes in geometric param-
eters. In particular, we want to analyse how the posi-
tioning errors change when we modify the positions of
the limb’s attachment points to the BP or MP. For our
purposes let us consider an arbitrary pose expressed in
the joint space of the three revolute joints {θ1, θ2, θ3} =
{−0.568, 1.588,−1.136}. Now let us consider how the er-
rors s and ξ are influenced changing the x-coordinates xA
and xB of the attachment points to the BP or MP. Figure 7
shows that the errors increase when the parameter xA in-
creases but they decrease when xB increases. This tradeoff
reveals that it is possible to increase the performance using
an optimization procedure in which geometric parameters
are considered optimization variables.

Making use of the results outlined in Fig. 7 we performed
an analysis on a modified version with xA = 0.1 [m] and

Fig. 7. Positioning and orienting errors vs. geometric parameters. Values
of s are expressed in [m]; those of ξ are in [rad]; xA and xB are in [m].

Fig. 8. Positioning error of the modified version along the boundaries of
workspaces with different constant orientations within the range [−60◦,
60◦] expressed in the joint space of the three revolute joints. Values of s,
expressed in [m], are reported on the legend bar.

xB = 0.3 [m]. As expected, the errors due to deforma-
tions under the same static wrench decrease compared to
the original version. Figures 8&9 show the positioning and
orienting errors of the modified version calculated along
the same boundaries of Figs. 5&6. The reader may no-
tice a greater number of points than the original version
as well as increased performance all over the boundaries
of workspaces. In Table III we summarized the number of
points Ns and Nξ that are above the limit values introduced
above; the mean values s and ξ; and the standard deviations
σs and σξ of s and ξ, respectively. We observe great disper-
sions of data comparable with the mean values for both the
modified and original versions. For future developments an
optimized structure should be aimed to reduce error disper-
sion and mean values at the same time.

VII. Conclusions
The elastostatic model of a novel hybrid robot for min-

imally invasive surgery has been described. Inverse and



TABLE III. Performance evaluation: original version vs. modified version.

Ns Nξ s ξ σs σξ
Original 629 604 1.101E-4 4.672E-4 1.121E-4 4.209E-4
Modified 670 667 7.009E-5 3.099E-4 7.316E-5 3.125E-4

Fig. 9. Orienting error of the modified version along the boundaries of
workspaces with different constant orientations within the range [−60◦,
60◦] expressed in the joint space of the three revolute joints. Values of ξ,
expressed in [rad], are reported on the legend bar.

forward kinematics have been briefly recalled as necessary
for the elastostatic analysis. The latter is based on linear-
ity and small displacements assumptions. Links composing
the structure have been considered flexible bodies while the
two platforms have been modeled as rigid bodies. Besides,
we employed curved two-node Timoshenko’s beams, with
constant strain fields, to achieve the symbolic stiffness ma-
trix of curved links composing the 3R limb of the robot.
Two cases describing the coupling of rigid and flexible bod-
ies through joints have been recalled from [18] to derive
local stiffness matrices. The latter have been combined to
obtain the limb stiffness matrices of the robot.

Statics analysis has been performed and compared to
commercial FE software for validation. Then, positioning
and orienting errors have been evaluated for the boundaries
of workspaces with different constant orientations by ap-
plying a wrench simulating the interaction between the skin
and the surgical instrument. Results revealed that the defor-
mations are above the limit values imposed for some points
of the boundary.

Some feasible extensions to optimization techniques are
finally included to analyse the sensitivity of the deforma-
tion errors to some geometric parameters. Future develop-
ments will pertain to optimization methods extended to the
combined use of geometrical and structural parameters as
optimization variables.
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