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Abstract 
In this paper a methodology to analyze the NVH performance of an EAxle with bevel gears is addressed. 
The geometry of bevel gears, together with the applied ease-off and the misalignment are introduced, and 
the excitation orders related to the gears and bearings are calculated. The EAxle is modeled as a flexible 
multi-body system, and the theoretical aspects related to the penalty contact formulation and modal 
reduction (Craig-Bampton method) are discussed.  

The NVH performance of the EAxle is evaluated as a function of the mounting distance (H), showing a 
significant reduction of the accelerations on a control point for a specific positive mounting distance. 
Finally, housing sound pressure level (SPL) is compared for the selected scenarios, showing a 
significative improvement for the optimized mounting distance configuration.  
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1 Introduction 
Spiral bevel gears are commonly used to transmit power between intersecting rotating shafts. Their 
applications range from both automotive and helicopter transmissions to reducers and various industrial 
applications [1]. The presence of a spiral angle allows for a smooth and gradual engagement of teeth, 
such that the Noise, Vibration, and Harshness (NVH) characteristics at high speed are improved [2]. The 
load carrying capacity is improved thanks to the overlapping tooth meshing [3,4].  

From the practical applications of the powertrain systems, it is well known that the NVH optimization of 
bevel gears is a challenging task. Due to the limitations in geometry and tolerances, difficulties may arise 
in the manufacturing processes. Furthermore, the noise behavior of bevel gears is influenced by the soft 
machining process and the following process. Bevel gears are often manufactured as gear sets, and 
lapped together as finishing operations, which makes the pinion and the gear a pair, that must be kept 
together [5]. The differences in the noise spectra of the lapped and ground gear sets are perceived to be 
quieter or more pleasant [6]. 

Altering the noise behavior of bevel gears is demonstrated in [7] by applying an individual topology 
deviation. By manipulating the regularity of the conventional gear mesh excitation, the amplitude of tooth 
mesh harmonics is reduced. With the application of topography scattering, the tonality of gear noise is 
reduced.  

Considerable improvement of the NVH characteristics of the geared systems can be achieved by gear 
macro and microgeometry modifications. Optimization of the noise emission level by selecting the desired 
microgeometry for a torque range can be a challenging procedure in the bevel gear design. A 
compromise between a sufficient load carrying capacity and acceptable noise level can be reached by 
simulating different micro geometry designs within the loaded tooth contact analysis. Since any particular 
tooth modification can be valid for a certain operating load range, the study presented in [8] analyzes the 
forced responses for several applied mean torque load cases. 

Design, manufacture, stress analysis, and experimental tests of low-noise high endurance spiral bevel 
gears is studied in [3]. As the result of this study, improvement of the bearing contact, and reduction of 
the magnitude of transmission errors as the precondition of reduction of noise and vibration are achieved. 
Furthermore, a predesigned parabolic function of the transmission errors and avoidance of areas of 
severe contact stresses for the increase of the endurance of the gear drives is obtained. 

In the simulations and analyses of powertrain systems, two different cases of heavy and light-loaded 
operations can be seen [9]. In the case of heavily loaded conditions with large mean torque loads, the 
high frequency mesh order responses are critical. Therefore, the internal gear mesh excitations play the 
major role for the usual tonal gear whine noise. On the other hand, in the case of light-loaded conditions 
with small mean torque loads, the gear rattle noise happens frequently due to the to external or internal 
excitations which lead to the loss of contact and tooth impact responses.  

Bevel gear mesh misalignments usually result in load distribution shifts and affect the noise. The scope of 
this paper is to investigate the effect of mounting distance (H) on the system dynamics of a E-Axle. A 
reduced flexible multibody model of the system is used to predict accelerations on virtual control points on 
the transmission housing and the equivalent radiated power (ERP) is calculated for all the tested 
configurations. Results show that the overall system noise is minimized for a proper value of the pinion 
offset.  
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2 E-Axle bevel gear geometry, misalignment, and excitation orders  
The electric axle analyzed in the following is a single-speed gearbox, powering the wheels of an electric 
vehicle, shown in Figure 1. Power is supplied by a permanent magnet synchronous motor to the input 
shaft and the output gear stage is integrated to the differential case. The modelling of the differential 
stage is not considered in the present study.  

 
 

Figure 1 – E-Axle with bevel gearset  

The bevel gear stage is manufactured by face milling Gleason-Duplex method [10]. The pair data and 
gear macro-geometry data are reported respectively in Table 1 and Table 2.  

Table 1 – Bevel gear – pair data 

Pair data – Face milling, Gleason duplex  Gear 1 Gear 2 

Transverse module gear 2 (outside) 𝑚𝑚𝑒𝑒𝑒𝑒2 [mm] 3.617 

Outer pitch diameter gear 2  𝑑𝑑𝑒𝑒2 [mm] 170  

Mean spiral angle, gear 1 𝛽𝛽𝑚𝑚1[°] 48° - Right Hand  

Normal pressure angle 𝛼𝛼𝑛𝑛 [°] 20° 

Shaft angle  ∑ [°] 90° 

Hypoid offset  𝑎𝑎 [mm] 25.4 

Cutter radius  𝑟𝑟𝑐𝑐0 [mm] 76.2 
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Table 2 – Bevel gear – gear data 

Gear Data   Gear 1 Gear 2 

Number of teeth 𝑧𝑧 [-] 13 47 

Face width 𝑏𝑏 [mm] 28.725 25 

Tip diameter (Outside) 𝑑𝑑𝑎𝑎𝑒𝑒[mm] 71.4936 171.2028 

Tooth depth (Outside) ℎ𝑒𝑒[mm] 7.5144 7.3779 

Face angle  𝛿𝛿𝑎𝑎[°] 22.9698 71.6033 

Root angle  𝛿𝛿𝑓𝑓[°] 17.4591 65.8597 

Profile shift coefficient  𝑥𝑥ℎ𝑚𝑚 0.4185 -0.4185 

Tooth thickness modification coefficient 𝑥𝑥𝑠𝑠𝑚𝑚 -0.0134 -0.0134 

The micro-geometry of the bevel gears is determined by the ease-off topography of the mating tooth 
flanks. Ease-off comprises, in general, all sorts of the tooth flank modifications (profile crown, lead crown, 
flank twist and higher-order crown) applied to both the pinion and the gear tooth surfaces. In other terms, 
it measures the extent by which the meshing tooth surfaces of the pinion and gear depart from conjugacy. 
The configuration of the ease-off topography of the bevel gears is shown in Figure 2, and the control data 
is reported in Table 3.  

 
Figure 2 – Ease-Off applied to the bevel gears 

 

Table 3 – Control data 

Control Data  Drive Coast 

Spiral Angle Value -0.0603° 0.0379° 

Pressure Angle Value 0.0178° -0.2183° 

Length Crowning Value 68.5407 um 39.6430 um 

Profile Crowning Value 1.1562 um 3.8688 um 

Bias Value 7.0183 um 7.9648 um 
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2.1 Bevel gear manufacturing 
The geometry of the teeth of spiral bevel gears is mainly influenced by the choice of the rough machining 
process [11]. The main manufacturing process for spiral bevel gears are the cutter head processes. The 
differentiation of the two processes, face milling and face hobbing, is justified by different process 
kinematics and defines the succeeding hard finishing process as well. The face milling process is a single 
indexing process in which the work piece is standing still, and the rotating cutter head mills a circular arc 
shaped tooth slot. The circular arc allows a grinding process with a cup grinding wheel as the hard 
finishing process. The tooth height is conical, and the tooth gap is constant. Details about spiral bevel 
gear manufacturing technology can be found in [12,13].  

The gear geometry adopted for the simulation has been generated by a powerful tool, simulating the 
cutting procedure for both the pinion and the gear. Resulting gear geometries are shown in Figure 3. 

 

 
Figure 3 – Bevel gear geometry 

 

2.2 Bevel gear misalignment parameters 
The gear mesh misalignments usually result in shifts in the load distribution of a gear pair and affect the 
noise. The misalignment parameters are shown in Figure 4 according to the Klingelnberg (or Gleason) 
conventions: the axial offset of the pinion (also referred as mounting distance) is named H (or P), the 
vertical offset of the pinion is named V (or E), and the axial shift of the gear is named J (or G). In this 
paper, the Klingelnberg convention is adopted.  

With reference to the mounting distance error H, when the mounting distance of the pinion is a positive 
error, the contact of the pinion will move towards the tooth root, while the contact of the mating gear will 
move toward the top of the tooth. This is the same situation as if the pressure angle of the pinion is 
smaller than that of the gear. On the other hand, if the mounting distance of the pinion has a negative 
error, the contact of the pinion will move toward the top and that of the gear will move toward the root. 
This is like the pressure angle of the pinion being larger than that of the gear. Mounting distance error will 
also cause a change of backlash: positive error increases backlash and negative decrease. Since the 
mounting distance error of the pinion affects the tooth contact greatly, it is customary to adjust the gear 
rather than the pinion in its axial direction.  
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Figure 4 – Gear mesh misalignment parameters according to the Gleason and Klingelnberg 

conventions 

A LTCA (Loaded Tooth Contact Analysis) has been performed on the bevel gear geometry of the case 
study E-Axle, changing the pinion offset from negative to positive values. The results are shown in 
Figure 5. 

 
Figure 5 – Bevel gear contact pattern and pinion offset (applied torque 500 Nm) 

2.3 Gear excitation orders of the case study E-Axle  
The calculation of the gear meshing excitation orders is reported in the following, with reference to the input 
shaft, according to the formulas provided in [14] and [15]. The gear and shaft frequencies, listed in Table 4, 
are related to:  

• Low harmonics of the shaft speed: originate from unbalance and misalignments (parallel and 
angular) 

• Harmonics of the fundamental tooth meshing frequency and their sidebands 

• Fractional frequencies of the fundamental frequency (subharmonic components)  
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Table 4 – Gear and Shaft related frequencies 

Gear Mesh Order  z1=13 

Harmonics of GMO 
𝑓𝑓𝑚𝑚 ± 𝑛𝑛 ⋅ 1; 2𝑓𝑓𝑚𝑚 ± 𝑛𝑛 ⋅ 1; 2𝑓𝑓𝑚𝑚 ± 𝑛𝑛 ⋅ 𝑍𝑍1

𝑍𝑍2
; … 

n=0, 1, 2, … 

Hunting tooth order 
𝑓𝑓𝑚𝑚 ⋅

𝐺𝐺𝐺𝐺𝐺𝐺(𝑧𝑧1, 𝑧𝑧2)
𝑧𝑧1 ⋅ 𝑧𝑧2 

;  

GCD is the greatest common divisor of both 
the number of teeth (z1 and z2) 

Low harmonics of the Shaft 
Speed 1,2,3,… 

 

3 Multibody Modelling of the E-Axle  
In this section the multibody model of the case study E-axle is introduced. The penalty contact 
formulation, adopted for the modelling of gear contact is first explained, then the fundamentals of flexible 
body integration are described.  

 
Figure 6 – Multibody model of the case study E-Axle 

3.1 Description of the contact force generation  
Several contact force models are nowadays implemented in multibody dynamics models [16]. In the 
present study, a penalty contact formulation has been chosen. The penalty approach allows the 
calculation of the contact force as a function of the penetration of two contact partners.  

The contact force 𝑓𝑓𝑛𝑛is calculated as the product of the contact stiffness 𝑘𝑘 multiplied by the penetration 
depth 𝛿𝛿 and the damping 𝑐𝑐 multiplied by the penetration velocity �̇�𝛿:  

𝑓𝑓𝑛𝑛 = 𝑘𝑘𝛿𝛿𝑚𝑚1 + 𝑐𝑐
�̇�𝛿
��̇�𝛿�

��̇�𝛿�
𝑚𝑚2𝛿𝛿𝑚𝑚3 
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The exponents 𝑚𝑚1,𝑚𝑚2,𝑚𝑚3 are used to add nonlinear behaviour which are typical in technical systems. 𝑚𝑚3  
yields an indentation damping effect.  

If the contact geometries can be described analytically, as it is the case in most rolling bearings, the main 
task is to determine the contact parameters such as stiffness and damping as well as their exponents. In 
the case of line and point contacts, the Hertz theory can be used to determine the stiffness and the 
stiffness exponent [17]. For damping, empirical values are usually used which often have a relation to the 
stiffness. For the representation of the bearing assemblies, a force element is selected that uses a three-
body approach. Here, the inner / outer ring of the bearing is put in contact with n rolling elements, which 
are combined into one body. 

If the surface of the contact partners cannot be described analytically, the contact surfaces are discretized 
by means of triangulation. The approximation of a curved surface by plane triangles or squares has the 
disadvantage that these contacts are susceptible to contact noise.  

Thus, when using such contacts, care must be taken to ensure that the mapping of the surface strikes a 
balance between computation time and result accuracy. Figure 7 shows different faceting of the pinion as 
a function of the main discretization parameters (plane tolerance factor and maximum facet size factor).  

 
Figure 7 – Contact discretization of the pinion surface 

If one wants to simulate the NVH behaviour of gears, it is of importance to avoid contact noise, since it is 
not possible to separate noise arising from contact discretization from noise arising from the actual model 
behaviour (which is to be observed). 

Based on the representation of the surface by this discretization, Choi shows in [18-19] how the contact 
noise can be reduced by adding a spline surface representation to overcome the plane surface area of 
the triangles / quads. These smoothing functions approximate the real surface by the face normal 
direction of the surrounding elements and lead theoretically to a steady patch crossing. Figure 8 
exemplifies such an approximation based on an ideal circular shape and on a tooth flange. One can see 
that a good surface representation is still dependent on the number of nodes/patches but the smoothing 
helps to reduce the gap between triangulation line and real geometry. As the spline representation is 
done by checking the face normals of the surrounding elements, an edge in the geometry leads to a 
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misinterpretation of the real surface, see Figure 8 C. This is critical on the tooth flanges or on some kind 
of the modifications where such smoothing has to be omitted or the surface has to be divided on edges. 

 
Figure 8 – Discretization examples 

For the model of the pinion and gear a dense surface representation has been chosen where the plane 
tolerance factor is set to 1 and the maximum facet size factor is set to 0.1. Contact smoothing has been 
applied. 

As the contact pattern of the pinon and gear contact cannot been easily described as a point or line 
contact, the Hertz theory cannot be applied. To get a good estimation of the contact stiffness it is usable 
to compare the results of the MBS contact pattern with other specialized software or FEM based contact 
analysis. In this study, the contact pattern was matched with a specialized software for bevel gears (see 
Figure 9).  

 
Figure 9 – Comparison of gear contact pattern: MBS simulation (left) and specialized bevel tool 

(right) – (applied torque 100 Nm) 

3.2 Flexible body integration 

3.2.1 Modal analysis 
Modal analysis is the process of determining the dynamic characteristics of a system in forms of natural 
frequencies, damping factors, and mode shapes and using them to formulate a mathematical model to 
describe its dynamic behavior [20]. Free vibrations of an MDOF {𝑥𝑥} system can be studied starting from 
its undamped equation of motion: 

[𝑀𝑀]{�̈�𝑥} + [𝐾𝐾]{𝑥𝑥} = {0} 
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where [𝑀𝑀] is the mass matrix, usually positive definite, [𝐾𝐾] is the stiffness matrix which is semi-positive 
definite in case the system shows rigid body modes (as in the case of an electric axle on its mountings). 
The non-trivial solution of the equation provides the free vibration of the system.  

Imposing a type of motion for which all Lagrangian coordinates depend on the same time function, i.e. 
{𝑥𝑥} = {𝜙𝜙} sin(𝜔𝜔𝜔𝜔), leads to: 

(−𝜔𝜔2[𝑀𝑀] + [𝐾𝐾]){𝜙𝜙} = {0}  

Non-trivial solutions are those for which the matrix (−𝜔𝜔2[𝑀𝑀] + [𝐾𝐾]) is singular: 

det(−𝜔𝜔2[𝑀𝑀] + [𝐾𝐾]) = 0  

This equation represents an eigenvalue problem, where 𝜔𝜔2 is the eigenvalue (the square of the natural 
frequency of the system) and {𝜙𝜙} is the eigenvector (the mode shape). 

Electric axles are supported by mountings, whose main purpose is to isolate the disturbance coming from 
the system itself from the vehicle structure. To determine the six low-frequency rigid modes, the mass 
matrix can be written in the following form: 

[𝑀𝑀] =

⎣
⎢
⎢
⎢
⎢
⎡
𝑚𝑚 0 0 0 0 0
0 𝑚𝑚 0 0 0 0
0 0 𝑚𝑚 0 0 0
0 0 0 𝐽𝐽𝑥𝑥𝑥𝑥 −𝐽𝐽𝑥𝑥𝑥𝑥 −𝐽𝐽𝑥𝑥𝑥𝑥
0 0 0 −𝐽𝐽𝑥𝑥𝑥𝑥 𝐽𝐽𝑥𝑥𝑥𝑥 −𝐽𝐽𝑥𝑥𝑥𝑥
0 0 0 −𝐽𝐽𝑥𝑥𝑥𝑥 −𝐽𝐽𝑥𝑥𝑥𝑥 𝐽𝐽𝑥𝑥𝑥𝑥 ⎦

⎥
⎥
⎥
⎥
⎤

  

where 𝑚𝑚 is the total mass of the system and 𝐽𝐽𝑖𝑖𝑖𝑖 represents the components of the mass moment of inertia 
tensor around each axis. The stiffness matrix depends on the mounting characteristics in terms of the 
static and dynamic stiffness.  

The first flexible modes usually encountered for an electric axle are related to the bending modes of the 
supports which connect the housing to the mountings. These modes can lead to the NVH disturbances 
for the driver if they propagate towards the vehicle structure interacting with other dynamic systems in a 
certain frequency band, i.e., in a certain range of the vehicle speed. 

To overcome issues of this type, it might be necessary to increase the supports stiffness-to-mass ratio 
corresponding to the disturbing mode to exit the interest frequency band or to reduce vibration, for 
example by utilizing a tuned mass damper. 

3.2.2 Modal reduction techniques 
In structural dynamics, finite element models are adopted to represent the dynamic behavior of a 
substructure. These models are often too refined and have millions of DOFs, and therefore, solving 
dynamic problems may result in unfeasible computation times. Thus, component model reduction 
methods are adopted, see e.g. [21,22], whose idea is modal superposition: nodal displacements {𝑥𝑥} are 
written as a linear combination of the normal modes �𝜙𝜙𝑖𝑖� and modal amplitudes 𝜂𝜂𝑖𝑖: 

{𝑥𝑥} = ∑ �𝜙𝜙𝑖𝑖�𝜂𝜂𝑖𝑖𝑚𝑚
𝑖𝑖=1   

The general form of the equations of motion for each substructure reads: 

[𝑀𝑀]{�̈�𝑥} + [𝐺𝐺]{�̇�𝑥} + [𝐾𝐾]{𝑥𝑥} = {𝑝𝑝} + {𝑔𝑔}  

where [𝑀𝑀] is the substructure mass matrix, [𝐺𝐺] is the damping matrix, [𝐾𝐾] is the stiffness matrix and {𝑝𝑝} +
{𝑔𝑔} is the force vector. Here, {𝑝𝑝} denotes the externally applied forces and {𝑔𝑔} represents the forces 
coming from the neighboring substructures. The reduction is performed by transforming the set of the 
original DOFs {𝑥𝑥} into a set of the generalized DOFs {𝑞𝑞} via the transformation matrix [𝑅𝑅]: 

{𝑥𝑥} = [𝑅𝑅]{𝑞𝑞}  

[𝑅𝑅] is the reduction basis, whose dimensions are 𝑛𝑛 × 𝑟𝑟. The reduced set of DOFs (𝑟𝑟) should be smaller 
than the original set of DOFs (𝑛𝑛), for an efficient reduction. 

Substituting {𝑥𝑥} into the equation of motion leads to: 

[𝑀𝑀][𝑅𝑅]{�̈�𝑞} + [𝐺𝐺][𝑅𝑅]{�̇�𝑞} + [𝐾𝐾][𝑅𝑅]{𝑞𝑞} = {𝑝𝑝} + {𝑔𝑔} + {𝑟𝑟}  



 

 11 21FTM12 

where {𝑟𝑟} is the error arising from the fact that the reduced set of DOFs does not span the full solution 
space. An error is only allowed in the space not spanned by the reduction basis, i.e., [𝑅𝑅]𝑇𝑇{𝑟𝑟} = 0. The 
projection of the previous equation onto the reduction basis gives: 

[𝑅𝑅]𝑇𝑇[𝑀𝑀][𝑅𝑅]{�̈�𝑞} + [𝑅𝑅]𝑇𝑇[𝐺𝐺][𝑅𝑅]{�̇�𝑞} + [𝑅𝑅]𝑇𝑇[𝐾𝐾][𝑅𝑅]{𝑞𝑞} = [𝑅𝑅]𝑇𝑇{𝑝𝑝} + [𝑅𝑅]𝑇𝑇{𝑔𝑔} 

i.e.: 

�𝑀𝑀��{�̈�𝑞} + [�̃�𝐺]{�̇�𝑞} + [𝐾𝐾�]{𝑞𝑞} = {𝑝𝑝�} + {𝑔𝑔�} 

Generally, a basis is built from a set of vibration modes, which contain information of the substructure’s 
dynamic behavior, and a set of static modes, which represent the static deformations caused by 
neighboring substructures. 

3.2.3 The Craig-Bampton method 
In the Craig-Bampton method, the substructure DOFs are divided into boundary and interface DOFs, 
each of them referring to a specific node-set in the finite element model, see [23]:  

– The vibrational information is the set of fixed-interface vibration modes: the substructure is fixed at its 
boundary DOFs and analysis is done to obtain the eigenmodes; 

– Constraint modes are used to represent the static deformations of a substructure caused by 
neighboring substructures. 

Fixed-interface vibration modes can be computed by constraining the boundary DOFs. The first step is 
the partitioning of DOFs into the boundary {𝑥𝑥𝑏𝑏} and internal {𝑥𝑥𝑖𝑖}. By neglecting the damping, Equations of 
motion, can be written as: 

�
[𝑀𝑀𝑏𝑏𝑏𝑏] [𝑀𝑀𝑏𝑏𝑖𝑖]
[𝑀𝑀𝑖𝑖𝑏𝑏] [𝑀𝑀𝑖𝑖𝑖𝑖]

� �
{�̈�𝑥𝑏𝑏}
{�̈�𝑥𝑖𝑖}

� + �
[𝐾𝐾𝑏𝑏𝑏𝑏] [𝐾𝐾𝑏𝑏𝑖𝑖]
[𝐾𝐾𝑖𝑖𝑏𝑏] [𝐾𝐾𝑖𝑖𝑖𝑖]

� �
{𝑥𝑥𝑏𝑏}
{𝑥𝑥𝑖𝑖}

� = �
{𝑝𝑝𝑏𝑏} + {𝑔𝑔𝑏𝑏}

{0} � 

where {𝑔𝑔𝑏𝑏} contains the reaction forces with neighboring substructures. Constraining the boundary DOFs 
({𝑥𝑥𝑏𝑏} = {0}) leads to: 

[𝑀𝑀𝑖𝑖𝑖𝑖]{�̈�𝑥𝑖𝑖} + [𝐾𝐾𝑖𝑖𝑖𝑖]{𝑥𝑥𝑖𝑖} = {0} 

That can be solved as an eigenvalue problem: 

�−𝜔𝜔𝑖𝑖,𝑖𝑖
2 [𝑀𝑀𝑖𝑖𝑖𝑖] + [𝐾𝐾𝑖𝑖𝑖𝑖]��𝜙𝜙𝑖𝑖,𝑖𝑖� = {0} 

The result is the set of eigenmodes and eigenfrequencies of the substructure constrained at its boundary 
DOFs (fixed-interface vibration modes): 

{𝑥𝑥𝑖𝑖} = [𝜙𝜙𝑖𝑖]{𝜂𝜂𝑖𝑖} 

Constraint modes contain the substructure static response to an applied boundary displacement. They 
are in fact representative of the static deformation due to a unit displacement applied to one of the 
boundary DOFs, while the remaining boundary DOFs are restrained, and no forces are applied to the 
internal DOFs. 

The first step is again partitioning the DOFs into the boundary and internal. In this case, the second 
equation, neglecting the inertia forces, reads: 

[𝐾𝐾𝑖𝑖𝑏𝑏]{𝑥𝑥𝑏𝑏} + [𝐾𝐾𝑖𝑖𝑖𝑖]{𝑥𝑥𝑖𝑖} = {0} 

From which: 

{𝑥𝑥𝑖𝑖} = −[𝐾𝐾𝑖𝑖𝑖𝑖]−1[𝐾𝐾𝑖𝑖𝑏𝑏]{𝑥𝑥𝑏𝑏}  

The columns of the static condensation matrix −[𝐾𝐾𝑖𝑖𝑖𝑖]−1[𝐾𝐾𝑖𝑖𝑏𝑏] contain the static modes, which represent the 
static response of the internal DOFs {𝑥𝑥𝑖𝑖} for a unit displacement of the boundary DOFs {𝑥𝑥𝑏𝑏}. 

The original set of DOFs can thus be reduced to a set of boundary DOFs, as: 

�
𝑥𝑥𝑏𝑏
𝑥𝑥𝑖𝑖 � = �

[𝐼𝐼]
 −[𝐾𝐾𝑖𝑖𝑖𝑖]−1[𝐾𝐾𝑖𝑖𝑏𝑏]� {𝑥𝑥𝑏𝑏} = �

[𝐼𝐼]
�𝜓𝜓𝐶𝐶,𝑖𝑖�

� {𝑥𝑥𝑏𝑏} = [𝜓𝜓𝐶𝐶]{𝑥𝑥𝑏𝑏} 

Once the constraint modes and fixed-interface vibration modes have been obtained, the displacement 
field of the interface nodes can be written through the superposition of the static and dynamic modes. 
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This is a function of the displacement field {𝑥𝑥𝑏𝑏} of the boundary nodes only; this is a crucial point of every 
condensation method: 

{𝑥𝑥𝑖𝑖} = �𝜓𝜓𝐶𝐶,𝑖𝑖�{𝑥𝑥𝑏𝑏} + [𝜙𝜙𝑖𝑖]{𝜂𝜂𝑖𝑖} 

The reduction basis therefore yields: 

�
{𝑥𝑥𝑏𝑏}
{𝑥𝑥𝑖𝑖}

� = �
{𝑥𝑥𝑏𝑏}

�𝜓𝜓𝐶𝐶,𝑖𝑖�{𝑥𝑥𝑏𝑏} + [𝜙𝜙𝑖𝑖]{𝜂𝜂𝑖𝑖}
� = �

[𝐼𝐼] [0]
�𝜓𝜓𝐶𝐶,𝑖𝑖� [𝜙𝜙𝑖𝑖]

� �
{𝑥𝑥𝑏𝑏}
{𝜂𝜂𝑖𝑖}

� = [𝑅𝑅𝐶𝐶𝐶𝐶] �
{𝑥𝑥𝑏𝑏}
{𝜂𝜂𝑖𝑖}

� 

Finally, �𝑀𝑀�� = [𝑅𝑅𝐶𝐶𝐶𝐶]𝑇𝑇[𝑀𝑀][𝑅𝑅𝐶𝐶𝐶𝐶] and �𝐾𝐾�� = [𝑅𝑅𝐶𝐶𝐶𝐶]𝑇𝑇[𝐾𝐾][𝑅𝑅𝐶𝐶𝐶𝐶]. 

The generalized DOFs vector contains both the physical displacements of the boundary nodes {𝑥𝑥𝑏𝑏} and 
the modal coordinates {𝜂𝜂𝑖𝑖}. 

The first advantage of the Craig-Bampton method is the fact that both the constraint modes and the fixed-
interface vibration modes can be easily computed. Then, in the reduced system, the original boundary 
DOFs are retained, allowing to add or replace substructures without having to analyze again the full 
model. In fact, the system substructures relate to joints at the boundary nodes. 

In Figure 10, a selection of the representative modes of the E-Axles housing is shown for both structural 
and boundary modes.  

 
Figure 10 – Selection of vibration modes of housing – structural modes (A-F) and boundary 

modes (X-Z) 

4 NVH Analysis of the E-Axle with mounting offset  
In this section, the NVH analysis of the case study E-Axle is presented. The simulations are carried out to 
evaluate the influence of both positive and negative mounting offsets (± H) on the vibration behavior of 
the system; five scenarios have been considered:   

• H= 0 mm (Zero Offset)  

• H= ± 0.1 mm  

• H= ± 0.5 mm  
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As a load case, a speedup is simulated going linear from 0 to 500 rad/s on the input shaft driven by a 
constraint equation in 5 seconds. A torque of 50 Nm is applied to each output shaft. The load on the 
output shafts is applied in the first 0.1 second of the simulation following a 3rd grade polynomial function.  

As in real test benches, it is a usable practice to place accelerometers on the selected measurements 
points. Therefore, in the multibody simulation (MBS), several virtual accelerometers have been defined, 
as shown in Figure 11.  

 
Figure 11 – Virtual accelerometers on E-Axle housing 

In the following, the results relative to the accelerometer A in Figure 11 are shown for all the considered 
scenarios. The accelerations normal to the surface are shown in the Campbell diagrams in Figure 12 and 
Figure 13, respectively, for both positive and negative pinion offsets H. As observed in Figure 12, the 
positive pinion offset leads to an increase of the acceleration amplitude following the displacement of the 
pinon. 

 
Figure 12 – Campbell diagram of acceleration on control point – positive pinion offset  
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Figure 13 – Campbell diagram of acceleration on control point – negative pinion offset 

The negative pinion offset shows a reduction of acceleration at -0.1 shift compared to the zero offset 
position; while a further pinion shift (H=-0.5) results in increased accelerations. This consideration is quite 
common in the practice of the bevel gears manufacturing, since the pinion offset is experimentally 
determined by bench testing, minimizing the transmission error of the gear pair. The explained procedure, 
suitably tuned with experimental validation, allows to perform a virtual test bench for the optimization of 
pinion offset. 

The influence of the pinion position has also been determined by a different system simulation where the 
pinion is shifted during a constant speed simulation. As an example, two steady state simulations have 
been analyzed: the first with input velocity of 270 rad/s and the second with input velocity of 460 rad/s, see 
Figure 14. At these speeds, the system showed the most dynamic responses in the previous simulations. 
The results show that the optimum pinion shift (minimizing accelerations on control point) is dependent on 
the rotational speed of the system.  

 
Figure 14 – Mounting distance (H Shift) vs system acceleration, input velocity of 270 rad/s and 

460 rad/s: the optimum H shift depends on the input speed  
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4.1 Sound pressure calculation  
To compare the results based on the emitted sound pressure level, FEM or BEM methods can be applied 
based on the results generated in the multibody simulation for nearfield and even far field analysis of the 
airborne sound. However, to easily get a qualitative idea of the improvement, the structure can also be 
simplified by a “0-Order” spherical radiator based on the structural vibrations.  

 
Figure 15 – Spherical radiator and E-Axle housing 

The power of sound can be calculated based on [24] as:  

𝑃𝑃𝑣𝑣 = 2𝜋𝜋𝑅𝑅𝐾𝐾2𝑉𝑉�𝑅𝑅2𝜌𝜌𝐿𝐿20°𝑐𝑐𝐿𝐿
�𝜔𝜔 𝜔𝜔𝐾𝐾� �2

1 + �𝜔𝜔 𝜔𝜔𝐾𝐾� �2
[𝑊𝑊] 

The radius of the representative spere, 𝑅𝑅𝐾𝐾,  can be guessed by the dimensions of the emitting structure. 
Since this is set as constant for all simulations, it might cause an error in the exact value of the SPL but it 
might be enough for a qualitative comparison  

𝑅𝑅𝐾𝐾~150[𝑚𝑚𝑚𝑚] 

With this assumption, the omnidirectional radiator angular frequency of the sphere is determined as: 

𝑤𝑤𝐾𝐾 ≔
𝑐𝑐𝐿𝐿
𝑅𝑅𝐾𝐾

 

Furthermore, the density of the surrounding air, as well as the sound velocity, have to be taken into account 

𝑐𝑐𝐿𝐿 = 343.4[𝑚𝑚 𝑠𝑠⁄ ]; 𝜌𝜌𝐿𝐿20° =1.2041 �𝑘𝑘𝑔𝑔 𝑚𝑚3� � 

The emitting surface velocity 𝑣𝑣𝑟𝑟 at a certain frequency 𝑤𝑤 are direct output of the multibody simulation and 
can be generated from the transient signal of the surface nodes by applying a Fast Fourier 
Transformation (FFT). P0 is defined as a base power  

𝑃𝑃0 = 1 ∗ 10−12[𝑊𝑊] 

The sound pressure level can then be calculated from 

𝐿𝐿𝑃𝑃(𝑣𝑣) = 10 ∗ 𝑙𝑙𝑔𝑔 �
𝑃𝑃𝑣𝑣
𝑃𝑃0
� [𝑑𝑑𝑑𝑑] 

Applying this simplified assumption to a mean velocity of all virtual accelerometers, as shown in Table 5, 
a negative shift of the bevel gear about 0.1 mm leads to a drop of the emitted sound pressure of 2.0 dB. 
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Table 5 – Sound pressure level vs. pinion offset 

H+ / H- Shift of Pinon  

  -0.5 [mm] Shift -0.1 [mm] Shift Neutral 
Position +0.1 [mm] Shift +0.5 [mm] Shift 

Shift of the SPL 
relative to the 

neutral position 
 + 4.37 [dB]  - 2.0 [dB]   ± 0.0 [dB]   + 1.77 [dB]   + 5.06 [dB] 

 

5 Conclusions 
The multibody model proposed in this study allows to assess the noise and vibration performance of an 
E-Axle with bevel gears as a function of the mounting distance (H). As expected, a significant reduction of 
the accelerations on a control point located on the housing, is observed for a specific mounting distance. 
A suitable tuning of the model by means of experimental validation is object of further study, to allow the 
realization of a virtual test bench for the optimization of the mounting distance.  

 

 

Acknowledgments 
The authors acknowledge Eng. Jürg Langhart (KISSsoft AG) for the precious support in performing the 
LTCA of bevel gears with a specialized software; KISSsoft AG (a Gleason Company) and Gleason 
Corporation for the support in the calculation of the bevel gearset.  



 

 17 21FTM12 

Bibliography 

[1] H. J. Stadtfeld, Gleason Bevel Gear Technology: The Science of Gear Engineering and Modern 
Manufacturing Methods for Angular Transmissions, Gleason Works, 2014 

[2] Vivet, M., Acinapura, A., Dooner, D., Mundo, D., Tamarozzi, T., & Desmet, W. (2018). Loaded tooth 
contact analysis of spiral bevel gears with kinematically correct motion transmission. In Proceedings of the 
International Gear Conference 2018 (pp. 223-232). Chartridge Books Oxford. 

[3] Litvin, F.L., Fuentes, A., Hayasaka, K.: Design, manufacture, stress analysis, and experimental tests of 
low-noise high endurance spiral bevel gears. Mechanism and Machine Theory, Vol. 41, 2006, PP. 83-118. 

[4] F. L. Litvin and A. Fuentes, Gear Geometry and Applied Theory, Cambridge University Press, 2004. 

[5] Akerblom, M.; Gear noise and vibration a literature survey. Semantic Scholar, 2001, PP. 1-25. 

[6] Knecht, P., Löpenhus C., Brecher C.: Influence of topography deviations on the psychoacoustic 
evaluation of ground bevel gears. Gear Technology, Nov.-Dec. 2016, PP. 84-95. 

[7] Geradts, P., Brecher, C., Löpenhaus, C., Kasten, M.: Reduction of the tonality of gear noise by 
application of topography scattering, Applied Acoustics, Vol. 148, 2019, PP. 344-359. 

[8] Cheng, Y., Lim, T.C.: Dynamics of hypoid gear transmission with nonlinear time-varying mesh 
characteristics, ASME Journal Mechanical Design. Vol. 125, 2003, PP. 373–382. 

[9] Peng, T.: Coupled multibody dynamic and vibration analysis of hypoid and bevel geared rotor system. 
PhD Thesis, Division of Research and Advanced Studies, University of Cincinnati, 2010. 

[10] Stadtfeld, H. J. Duplex cut method for making generated spiral bevel gears of a bevel or hypoid gear 
drive, Patent  

[11] Brecher, C., Löpenhaus, C., & Knecht, P. (2016). Design of acoustical optimized bevel gears using 
manufacturing simulation. Procedia CIRP, 41, 902-907. 

[12] H. J. Stadtfeld, Gleason Bevel Gear Technology: The Science of Gear Engineering and Modern 
Manufacturing Methods for Angular Transmissions, Gleason Works, 2014 

[13] Stadtfeld, H. J. Practical Gear Engineering, Answers to Common Gear Manufacturing Questions, 
Gleason Works, 2019  

[14] Marano, D., Pascale, L., Langhart, J., Ebrahimi, S., & Giese, T. NVH Analysis and Simulation of 
Automotive E-Axles. 

[15] Tuma, J. (2014).Vehicle gearbox noise and vibration: Measurement, signal analysis, signal processing 
and noise reduction measures. John Wiley & Sons. 

[16] Flores, P., & Lankarani, H. M.: Contact force models for multibody dynamics. Springer, 2016. 

[17] Marano, D., Pellicano, F., Pallara, E., Piantoni, A., Tabaglio, L., Lucchi, M., & Orlandi, S. (2018). 
Modelling and simulation of rack-pinion steering systems with manufacturing errors for performance 
prediction. International Journal of Vehicle Systems Modelling and Testing, 13(2), 178-198. 

[18] Choi, J., Rhim, S., & Choi, J. H. (2013). A general purpose contact algorithm using a compliance 
contact force model for rigid and flexible bodies of complex geometry. International Journal of Non-Linear 
Mechanics, 53, 13-23. 



 

 18 21FTM12 

[19] Choi, J., & Choi, J. H. (2013, August). A Smooth Contact Algorithm Using Cubic Spline Surface 
Interpolation for Rigid and Flexible Bodies. In International Design Engineering Technical Conferences and 
Computers and Information in Engineering Conference (Vol. 55966, p. V07AT10A043). American Society 
of Mechanical Engineers. 

[20] He, J., Fu, Z.F.: Modal Analysis. Butterworth-Heinemann, 2001. 

[21] Simeon, B.: Computational Flexible Multibody Dynamics: A Differential-Algebraic Approach. Springer, 
2013. 

[22] Bauchau, O.A.: Flexible Multibody Dynamics. Springer, 2011.  

[23] Allen, M.S., Rixen, D., van der Seijs, M., Tiso, P., Abrahamsson, Th., Mayes, R.L.: Substructuring in 
Engineering Dynamics: Emerging Numerical and Experimental Techniques. CISM International Centre for 
Mechanical Sciences, Springer, 2020. 

[24] Franz G. Kollmann (2000). Maschinenakustik Springer-Verlag Berlin Heidelberg. 


	21FTM12
	AGMA Technical Paper
	NVH Analysis of an Axle Drive with Bevel Gearset 
	Davide Marano, GearLab IT
	Timo Giese, FunctionBay Germany 
	Saeed Ebrahimi, KISSsoft AG
	NVH Analysis of an Axle Drive with Bevel Gearset
	Davide Marano, GearLab IT
	Timo Giese, FunctionBay Germany 
	Saeed Ebrahimi, KISSsoft AG 
	[The statements and opinions contained herein are those of the author and should not be construed as an official action or opinion of the American Gear Manufacturers Association.]
	Abstract
	In this paper a methodology to analyze the NVH performance of an EAxle with bevel gears is addressed. The geometry of bevel gears, together with the applied ease-off and the misalignment are introduced, and the excitation orders related to the gears and bearings are calculated. The EAxle is modeled as a flexible multi-body system, and the theoretical aspects related to the penalty contact formulation and modal reduction (Craig-Bampton method) are discussed. 
	The NVH performance of the EAxle is evaluated as a function of the mounting distance (H), showing a significant reduction of the accelerations on a control point for a specific positive mounting distance. Finally, housing sound pressure level (SPL) is compared for the selected scenarios, showing a significative improvement for the optimized mounting distance configuration. 
	Copyright ©2021
	American Gear Manufacturers Association1001 N. Fairfax Street, Suite 500Alexandria, Virginia 22314
	October 2021
	ISBN: 978-1-64353-106-9
	NVH Analysis of an Axle Drive with Bevel Gearset
	Davide Marano, GearLab IT
	Timo Giese, FunctionBay Germany 
	Saeed Ebrahimi, KISSsoft AG 
	1 Introduction
	Spiral bevel gears are commonly used to transmit power between intersecting rotating shafts. Their applications range from both automotive and helicopter transmissions to reducers and various industrial applications [1]. The presence of a spiral angle allows for a smooth and gradual engagement of teeth, such that the Noise, Vibration, and Harshness (NVH) characteristics at high speed are improved [2]. The load carrying capacity is improved thanks to the overlapping tooth meshing [3,4]. 
	From the practical applications of the powertrain systems, it is well known that the NVH optimization of bevel gears is a challenging task. Due to the limitations in geometry and tolerances, difficulties may arise in the manufacturing processes. Furthermore, the noise behavior of bevel gears is influenced by the soft machining process and the following process. Bevel gears are often manufactured as gear sets, and lapped together as finishing operations, which makes the pinion and the gear a pair, that must be kept together [5]. The differences in the noise spectra of the lapped and ground gear sets are perceived to be quieter or more pleasant [6].
	Altering the noise behavior of bevel gears is demonstrated in [7] by applying an individual topology deviation. By manipulating the regularity of the conventional gear mesh excitation, the amplitude of tooth mesh harmonics is reduced. With the application of topography scattering, the tonality of gear noise is reduced. 
	Considerable improvement of the NVH characteristics of the geared systems can be achieved by gear macro and microgeometry modifications. Optimization of the noise emission level by selecting the desired microgeometry for a torque range can be a challenging procedure in the bevel gear design. A compromise between a sufficient load carrying capacity and acceptable noise level can be reached by simulating different micro geometry designs within the loaded tooth contact analysis. Since any particular tooth modification can be valid for a certain operating load range, the study presented in [8] analyzes the forced responses for several applied mean torque load cases.
	Design, manufacture, stress analysis, and experimental tests of low-noise high endurance spiral bevel gears is studied in [3]. As the result of this study, improvement of the bearing contact, and reduction of the magnitude of transmission errors as the precondition of reduction of noise and vibration are achieved. Furthermore, a predesigned parabolic function of the transmission errors and avoidance of areas of severe contact stresses for the increase of the endurance of the gear drives is obtained.
	In the simulations and analyses of powertrain systems, two different cases of heavy and light-loaded operations can be seen [9]. In the case of heavily loaded conditions with large mean torque loads, the high frequency mesh order responses are critical. Therefore, the internal gear mesh excitations play the major role for the usual tonal gear whine noise. On the other hand, in the case of light-loaded conditions with small mean torque loads, the gear rattle noise happens frequently due to the to external or internal excitations which lead to the loss of contact and tooth impact responses. 
	Bevel gear mesh misalignments usually result in load distribution shifts and affect the noise. The scope of this paper is to investigate the effect of mounting distance (H) on the system dynamics of a E-Axle. A reduced flexible multibody model of the system is used to predict accelerations on virtual control points on the transmission housing and the equivalent radiated power (ERP) is calculated for all the tested configurations. Results show that the overall system noise is minimized for a proper value of the pinion offset. 
	2 E-Axle bevel gear geometry, misalignment, and excitation orders
	2.1 Bevel gear manufacturing
	2.2 Bevel gear misalignment parameters
	2.3 Gear excitation orders of the case study E-Axle

	The electric axle analyzed in the following is a single-speed gearbox, powering the wheels of an electric vehicle, shown in Figure 1. Power is supplied by a permanent magnet synchronous motor to the input shaft and the output gear stage is integrated to the differential case. The modelling of the differential stage is not considered in the present study. 
	/
	Figure 1 – E-Axle with bevel gearset 
	The bevel gear stage is manufactured by face milling Gleason-Duplex method [10]. The pair data and gear macro-geometry data are reported respectively in Table 1 and Table 2. 
	Table 1 – Bevel gear – pair data
	Gear 2
	Gear 1
	Pair data – Face milling, Gleason duplex 
	3.617
	Transverse module gear 2 (outside)
	𝑚𝑒𝑡2 [mm]
	170 
	Outer pitch diameter gear 2 
	𝑑𝑒2 [mm]
	48° - Right Hand 
	Mean spiral angle, gear 1
	𝛽𝑚1[°]
	20°
	Normal pressure angle
	𝛼𝑛 [°]
	90°
	Shaft angle 
	∑ [°]
	25.4
	Hypoid offset 
	𝑎 [mm]
	76.2
	Cutter radius 
	𝑟𝑐0 [mm]
	Table 2 – Bevel gear – gear data
	Gear 2
	Gear 1
	Gear Data  
	47
	13
	Number of teeth
	𝑧 [-]
	25
	28.725
	Face width
	𝑏 [mm]
	171.2028
	71.4936
	Tip diameter (Outside)
	𝑑𝑎𝑒[mm]
	7.3779
	7.5144
	Tooth depth (Outside)
	ℎ𝑒[mm]
	71.6033
	22.9698
	Face angle 
	𝛿𝑎[°]
	65.8597
	17.4591
	Root angle 
	𝛿𝑓[°]
	-0.4185
	0.4185
	Profile shift coefficient 
	𝑥ℎ𝑚
	-0.0134
	-0.0134
	Tooth thickness modification coefficient
	𝑥𝑠𝑚
	The micro-geometry of the bevel gears is determined by the ease-off topography of the mating tooth flanks. Ease-off comprises, in general, all sorts of the tooth flank modifications (profile crown, lead crown, flank twist and higher-order crown) applied to both the pinion and the gear tooth surfaces. In other terms, it measures the extent by which the meshing tooth surfaces of the pinion and gear depart from conjugacy. The configuration of the ease-off topography of the bevel gears is shown in Figure 2, and the control data is reported in Table 3. 
	/
	Figure 2 – Ease-Off applied to the bevel gears
	Table 3 – Control data
	Coast
	Drive
	Control Data 
	0.0379°
	-0.0603°
	Spiral Angle Value
	-0.2183°
	0.0178°
	Pressure Angle Value
	39.6430 um
	68.5407 um
	Length Crowning Value
	3.8688 um
	1.1562 um
	Profile Crowning Value
	7.9648 um
	7.0183 um
	Bias Value
	The geometry of the teeth of spiral bevel gears is mainly influenced by the choice of the rough machining process [11]. The main manufacturing process for spiral bevel gears are the cutter head processes. The differentiation of the two processes, face milling and face hobbing, is justified by different process kinematics and defines the succeeding hard finishing process as well. The face milling process is a single indexing process in which the work piece is standing still, and the rotating cutter head mills a circular arc shaped tooth slot. The circular arc allows a grinding process with a cup grinding wheel as the hard finishing process. The tooth height is conical, and the tooth gap is constant. Details about spiral bevel gear manufacturing technology can be found in [12,13]. 
	The gear geometry adopted for the simulation has been generated by a powerful tool, simulating the cutting procedure for both the pinion and the gear. Resulting gear geometries are shown in Figure 3.
	/
	Figure 3 – Bevel gear geometry
	The gear mesh misalignments usually result in shifts in the load distribution of a gear pair and affect the noise. The misalignment parameters are shown in Figure 4 according to the Klingelnberg (or Gleason) conventions: the axial offset of the pinion (also referred as mounting distance) is named H (or P), the vertical offset of the pinion is named V (or E), and the axial shift of the gear is named J (or G). In this paper, the Klingelnberg convention is adopted. 
	With reference to the mounting distance error H, when the mounting distance of the pinion is a positive error, the contact of the pinion will move towards the tooth root, while the contact of the mating gear will move toward the top of the tooth. This is the same situation as if the pressure angle of the pinion is smaller than that of the gear. On the other hand, if the mounting distance of the pinion has a negative error, the contact of the pinion will move toward the top and that of the gear will move toward the root. This is like the pressure angle of the pinion being larger than that of the gear. Mounting distance error will also cause a change of backlash: positive error increases backlash and negative decrease. Since the mounting distance error of the pinion affects the tooth contact greatly, it is customary to adjust the gear rather than the pinion in its axial direction. 
	/
	Figure 4 – Gear mesh misalignment parameters according to the Gleason and Klingelnberg conventions
	A LTCA (Loaded Tooth Contact Analysis) has been performed on the bevel gear geometry of the case study E-Axle, changing the pinion offset from negative to positive values. The results are shown in Figure 5.
	/
	Figure 5 – Bevel gear contact pattern and pinion offset (applied torque 500 Nm)
	The calculation of the gear meshing excitation orders is reported in the following, with reference to the input shaft, according to the formulas provided in [14] and [15]. The gear and shaft frequencies, listed in Table 4, are related to: 
	 Low harmonics of the shaft speed: originate from unbalance and misalignments (parallel and angular)
	 Harmonics of the fundamental tooth meshing frequency and their sidebands
	 Fractional frequencies of the fundamental frequency (subharmonic components) 
	Table 4 – Gear and Shaft related frequencies
	z1=13
	Gear Mesh Order 
	𝑓𝑚±𝑛⋅1; 2𝑓𝑚±𝑛⋅1; 2𝑓𝑚±𝑛⋅𝑍1𝑍2; …
	Harmonics of GMO
	n=0, 1, 2, …
	𝑓𝑚⋅𝐺𝐶𝐷𝑧1,𝑧2𝑧1⋅𝑧2 ; 
	Hunting tooth order
	GCD is the greatest common divisor of both the number of teeth (z1 and z2)
	Low harmonics of the Shaft Speed
	1,2,3,…
	3 Multibody Modelling of the E-Axle
	3.1 Description of the contact force generation
	3.2 Flexible body integration
	3.2.1 Modal analysis
	3.2.2 Modal reduction techniques
	3.2.3 The Craig-Bampton method


	In this section the multibody model of the case study E-axle is introduced. The penalty contact formulation, adopted for the modelling of gear contact is first explained, then the fundamentals of flexible body integration are described. 
	/
	Figure 6 – Multibody model of the case study E-Axle
	Several contact force models are nowadays implemented in multibody dynamics models [16]. In the present study, a penalty contact formulation has been chosen. The penalty approach allows the calculation of the contact force as a function of the penetration of two contact partners. 
	The contact force 𝑓𝑛is calculated as the product of the contact stiffness 𝑘 multiplied by the penetration depth 𝛿 and the damping 𝑐 multiplied by the penetration velocity 𝛿: 
	𝑓𝑛=𝑘𝛿𝑚1+𝑐𝛿𝛿𝛿𝑚2𝛿𝑚3
	The exponents 𝑚1,𝑚2,𝑚3 are used to add nonlinear behaviour which are typical in technical systems. 𝑚3  yields an indentation damping effect. 
	If the contact geometries can be described analytically, as it is the case in most rolling bearings, the main task is to determine the contact parameters such as stiffness and damping as well as their exponents. In the case of line and point contacts, the Hertz theory can be used to determine the stiffness and the stiffness exponent [17]. For damping, empirical values are usually used which often have a relation to the stiffness. For the representation of the bearing assemblies, a force element is selected that uses a three-body approach. Here, the inner / outer ring of the bearing is put in contact with n rolling elements, which are combined into one body.
	If the surface of the contact partners cannot be described analytically, the contact surfaces are discretized by means of triangulation. The approximation of a curved surface by plane triangles or squares has the disadvantage that these contacts are susceptible to contact noise. 
	Thus, when using such contacts, care must be taken to ensure that the mapping of the surface strikes a balance between computation time and result accuracy. Figure 7 shows different faceting of the pinion as a function of the main discretization parameters (plane tolerance factor and maximum facet size factor). 
	/
	Figure 7 – Contact discretization of the pinion surface
	If one wants to simulate the NVH behaviour of gears, it is of importance to avoid contact noise, since it is not possible to separate noise arising from contact discretization from noise arising from the actual model behaviour (which is to be observed).
	Based on the representation of the surface by this discretization, Choi shows in [18-19] how the contact noise can be reduced by adding a spline surface representation to overcome the plane surface area of the triangles / quads. These smoothing functions approximate the real surface by the face normal direction of the surrounding elements and lead theoretically to a steady patch crossing. Figure 8 exemplifies such an approximation based on an ideal circular shape and on a tooth flange. One can see that a good surface representation is still dependent on the number of nodes/patches but the smoothing helps to reduce the gap between triangulation line and real geometry. As the spline representation is done by checking the face normals of the surrounding elements, an edge in the geometry leads to a misinterpretation of the real surface, see Figure 8 C. This is critical on the tooth flanges or on some kind of the modifications where such smoothing has to be omitted or the surface has to be divided on edges.
	/
	Figure 8 – Discretization examples
	For the model of the pinion and gear a dense surface representation has been chosen where the plane tolerance factor is set to 1 and the maximum facet size factor is set to 0.1. Contact smoothing has been applied.
	As the contact pattern of the pinon and gear contact cannot been easily described as a point or line contact, the Hertz theory cannot be applied. To get a good estimation of the contact stiffness it is usable to compare the results of the MBS contact pattern with other specialized software or FEM based contact analysis. In this study, the contact pattern was matched with a specialized software for bevel gears (see Figure 9). 
	/
	Figure 9 – Comparison of gear contact pattern: MBS simulation (left) and specialized bevel tool (right) – (applied torque 100 Nm)
	Modal analysis is the process of determining the dynamic characteristics of a system in forms of natural frequencies, damping factors, and mode shapes and using them to formulate a mathematical model to describe its dynamic behavior [20]. Free vibrations of an MDOF 𝑥 system can be studied starting from its undamped equation of motion:
	𝑀𝑥+𝐾𝑥=0
	where 𝑀 is the mass matrix, usually positive definite, [𝐾] is the stiffness matrix which is semi-positive definite in case the system shows rigid body modes (as in the case of an electric axle on its mountings). The non-trivial solution of the equation provides the free vibration of the system. 
	Imposing a type of motion for which all Lagrangian coordinates depend on the same time function, i.e. 𝑥=𝜙sin𝜔𝑡, leads to:
	−𝜔2𝑀+𝐾𝜙=0 
	Non-trivial solutions are those for which the matrix −𝜔2𝑀+𝐾 is singular:
	det−𝜔2𝑀+𝐾=0 
	This equation represents an eigenvalue problem, where 𝜔2 is the eigenvalue (the square of the natural frequency of the system) and 𝜙 is the eigenvector (the mode shape).
	Electric axles are supported by mountings, whose main purpose is to isolate the disturbance coming from the system itself from the vehicle structure. To determine the six low-frequency rigid modes, the mass matrix can be written in the following form:
	𝑀=𝑚000000𝑚000000𝑚000000𝐽𝑥𝑥−𝐽𝑥𝑦−𝐽𝑥𝑧000−𝐽𝑦𝑥𝐽𝑦𝑦−𝐽𝑦𝑧000−𝐽𝑧𝑥−𝐽𝑧𝑦𝐽𝑧𝑧 
	where 𝑚 is the total mass of the system and 𝐽𝑖𝑗 represents the components of the mass moment of inertia tensor around each axis. The stiffness matrix depends on the mounting characteristics in terms of the static and dynamic stiffness. 
	The first flexible modes usually encountered for an electric axle are related to the bending modes of the supports which connect the housing to the mountings. These modes can lead to the NVH disturbances for the driver if they propagate towards the vehicle structure interacting with other dynamic systems in a certain frequency band, i.e., in a certain range of the vehicle speed.
	To overcome issues of this type, it might be necessary to increase the supports stiffness-to-mass ratio corresponding to the disturbing mode to exit the interest frequency band or to reduce vibration, for example by utilizing a tuned mass damper.
	In structural dynamics, finite element models are adopted to represent the dynamic behavior of a substructure. These models are often too refined and have millions of DOFs, and therefore, solving dynamic problems may result in unfeasible computation times. Thus, component model reduction methods are adopted, see e.g. [21,22], whose idea is modal superposition: nodal displacements 𝑥 are written as a linear combination of the normal modes 𝜙𝑗 and modal amplitudes 𝜂𝑗:
	𝑥=𝑗=1𝑚𝜙𝑗𝜂𝑗 
	The general form of the equations of motion for each substructure reads:
	𝑀𝑥+𝐶𝑥+[𝐾]{𝑥}={𝑝}+𝑔 
	where 𝑀 is the substructure mass matrix, 𝐶 is the damping matrix, 𝐾 is the stiffness matrix and 𝑝+𝑔 is the force vector. Here, 𝑝 denotes the externally applied forces and 𝑔 represents the forces coming from the neighboring substructures. The reduction is performed by transforming the set of the original DOFs 𝑥 into a set of the generalized DOFs 𝑞 via the transformation matrix 𝑅:
	𝑥=𝑅{𝑞} 
	[𝑅] is the reduction basis, whose dimensions are 𝑛×𝑟. The reduced set of DOFs (𝑟) should be smaller than the original set of DOFs (𝑛), for an efficient reduction.
	Substituting 𝑥 into the equation of motion leads to:
	𝑀𝑅𝑞+𝐶𝑅𝑞+𝐾𝑅𝑞=𝑝+𝑔+{𝑟} 
	where 𝑟 is the error arising from the fact that the reduced set of DOFs does not span the full solution space. An error is only allowed in the space not spanned by the reduction basis, i.e., 𝑅𝑇𝑟=0. The projection of the previous equation onto the reduction basis gives:
	𝑅𝑇𝑀𝑅𝑞+𝑅𝑇𝐶𝑅𝑞+𝑅𝑇𝐾𝑅𝑞=𝑅𝑇𝑝+𝑅𝑇𝑔
	i.e.:
	𝑀𝑞+[𝐶]𝑞+[𝐾]{𝑞}={𝑝}+𝑔
	Generally, a basis is built from a set of vibration modes, which contain information of the substructure’s dynamic behavior, and a set of static modes, which represent the static deformations caused by neighboring substructures.
	In the Craig-Bampton method, the substructure DOFs are divided into boundary and interface DOFs, each of them referring to a specific node-set in the finite element model, see [23]: 
	– The vibrational information is the set of fixed-interface vibration modes: the substructure is fixed at its boundary DOFs and analysis is done to obtain the eigenmodes;
	– Constraint modes are used to represent the static deformations of a substructure caused by neighboring substructures.
	Fixed-interface vibration modes can be computed by constraining the boundary DOFs. The first step is the partitioning of DOFs into the boundary 𝑥𝑏 and internal 𝑥𝑖. By neglecting the damping, Equations of motion, can be written as:
	𝑀𝑏𝑏𝑀𝑏𝑖𝑀𝑖𝑏𝑀𝑖𝑖𝑥𝑏𝑥𝑖+𝐾𝑏𝑏𝐾𝑏𝑖𝐾𝑖𝑏𝐾𝑖𝑖𝑥𝑏𝑥𝑖=𝑝𝑏+𝑔𝑏0
	where 𝑔𝑏 contains the reaction forces with neighboring substructures. Constraining the boundary DOFs (𝑥𝑏=0) leads to:
	𝑀𝑖𝑖𝑥𝑖+𝐾𝑖𝑖𝑥𝑖=0
	That can be solved as an eigenvalue problem:
	−𝜔𝑖,𝑗2𝑀𝑖𝑖+𝐾𝑖𝑖𝜙𝑖,𝑗=0
	The result is the set of eigenmodes and eigenfrequencies of the substructure constrained at its boundary DOFs (fixed-interface vibration modes):
	𝑥𝑖=𝜙𝑖𝜂𝑖
	Constraint modes contain the substructure static response to an applied boundary displacement. They are in fact representative of the static deformation due to a unit displacement applied to one of the boundary DOFs, while the remaining boundary DOFs are restrained, and no forces are applied to the internal DOFs.
	The first step is again partitioning the DOFs into the boundary and internal. In this case, the second equation, neglecting the inertia forces, reads:
	𝐾𝑖𝑏𝑥𝑏+𝐾𝑖𝑖𝑥𝑖=0
	From which:
	𝑥𝑖=−𝐾𝑖𝑖−1𝐾𝑖𝑏𝑥𝑏 
	The columns of the static condensation matrix −𝐾𝑖𝑖−1𝐾𝑖𝑏 contain the static modes, which represent the static response of the internal DOFs 𝑥𝑖 for a unit displacement of the boundary DOFs 𝑥𝑏.
	The original set of DOFs can thus be reduced to a set of boundary DOFs, as:
	𝑥𝑏𝑥𝑖=𝐼 −𝐾𝑖𝑖−1𝐾𝑖𝑏𝑥𝑏=𝐼𝜓𝐶,𝑖𝑥𝑏=𝜓𝐶𝑥𝑏
	Once the constraint modes and fixed-interface vibration modes have been obtained, the displacement field of the interface nodes can be written through the superposition of the static and dynamic modes. This is a function of the displacement field 𝑥𝑏 of the boundary nodes only; this is a crucial point of every condensation method:
	𝑥𝑖=𝜓𝐶,𝑖𝑥𝑏+𝜙𝑖𝜂𝑖
	The reduction basis therefore yields:
	𝑥𝑏𝑥𝑖=𝑥𝑏𝜓𝐶,𝑖𝑥𝑏+𝜙𝑖𝜂𝑖=𝐼0𝜓𝐶,𝑖𝜙𝑖𝑥𝑏𝜂𝑖=𝑅𝐶𝐵𝑥𝑏𝜂𝑖
	Finally, 𝑀=𝑅𝐶𝐵𝑇𝑀𝑅𝐶𝐵 and 𝐾=𝑅𝐶𝐵𝑇𝐾𝑅𝐶𝐵.
	The generalized DOFs vector contains both the physical displacements of the boundary nodes 𝑥𝑏 and the modal coordinates 𝜂𝑖.
	The first advantage of the Craig-Bampton method is the fact that both the constraint modes and the fixed-interface vibration modes can be easily computed. Then, in the reduced system, the original boundary DOFs are retained, allowing to add or replace substructures without having to analyze again the full model. In fact, the system substructures relate to joints at the boundary nodes.
	In Figure 10, a selection of the representative modes of the E-Axles housing is shown for both structural and boundary modes. 
	/
	Figure 10 – Selection of vibration modes of housing – structural modes (A-F) and boundary modes (X-Z)
	4 NVH Analysis of the E-Axle with mounting offset
	4.1 Sound pressure calculation

	In this section, the NVH analysis of the case study E-Axle is presented. The simulations are carried out to evaluate the influence of both positive and negative mounting offsets (± H) on the vibration behavior of the system; five scenarios have been considered:  
	 H= 0 mm (Zero Offset) 
	 H= ± 0.1 mm 
	 H= ± 0.5 mm 
	As a load case, a speedup is simulated going linear from 0 to 500 rad/s on the input shaft driven by a constraint equation in 5 seconds. A torque of 50 Nm is applied to each output shaft. The load on the output shafts is applied in the first 0.1 second of the simulation following a 3rd grade polynomial function. 
	As in real test benches, it is a usable practice to place accelerometers on the selected measurements points. Therefore, in the multibody simulation (MBS), several virtual accelerometers have been defined, as shown in Figure 11. 
	/
	Figure 11 – Virtual accelerometers on E-Axle housing
	In the following, the results relative to the accelerometer A in Figure 11 are shown for all the considered scenarios. The accelerations normal to the surface are shown in the Campbell diagrams in Figure 12 and Figure 13, respectively, for both positive and negative pinion offsets H. As observed in Figure 12, the positive pinion offset leads to an increase of the acceleration amplitude following the displacement of the pinon.
	/
	Figure 12 – Campbell diagram of acceleration on control point – positive pinion offset 
	/
	Figure 13 – Campbell diagram of acceleration on control point – negative pinion offset
	The negative pinion offset shows a reduction of acceleration at -0.1 shift compared to the zero offset position; while a further pinion shift (H=-0.5) results in increased accelerations. This consideration is quite common in the practice of the bevel gears manufacturing, since the pinion offset is experimentally determined by bench testing, minimizing the transmission error of the gear pair. The explained procedure, suitably tuned with experimental validation, allows to perform a virtual test bench for the optimization of pinion offset.
	The influence of the pinion position has also been determined by a different system simulation where the pinion is shifted during a constant speed simulation. As an example, two steady state simulations have been analyzed: the first with input velocity of 270 rad/s and the second with input velocity of 460 rad/s, see Figure 14. At these speeds, the system showed the most dynamic responses in the previous simulations. The results show that the optimum pinion shift (minimizing accelerations on control point) is dependent on the rotational speed of the system. 
	/
	Figure 14 – Mounting distance (H Shift) vs system acceleration, input velocity of 270 rad/s and 460 rad/s: the optimum H shift depends on the input speed 
	To compare the results based on the emitted sound pressure level, FEM or BEM methods can be applied based on the results generated in the multibody simulation for nearfield and even far field analysis of the airborne sound. However, to easily get a qualitative idea of the improvement, the structure can also be simplified by a “0-Order” spherical radiator based on the structural vibrations. 
	/
	Figure 15 – Spherical radiator and E-Axle housing
	The power of sound can be calculated based on [24] as: 
	𝑃𝑣=2𝜋𝑅𝐾2𝑉𝑅2𝜌𝐿20°𝑐𝐿𝜔𝜔𝐾21+𝜔𝜔𝐾2[𝑊]
	The radius of the representative spere, 𝑅𝐾,  can be guessed by the dimensions of the emitting structure. Since this is set as constant for all simulations, it might cause an error in the exact value of the SPL but it might be enough for a qualitative comparison 
	𝑅𝐾~150𝑚𝑚
	With this assumption, the omnidirectional radiator angular frequency of the sphere is determined as:
	𝑤𝐾≔𝑐𝐿𝑅𝐾
	Furthermore, the density of the surrounding air, as well as the sound velocity, have to be taken into account
	𝑐𝐿=343.4𝑚𝑠; 𝜌𝐿20°=1.2041 𝑘𝑔𝑚3
	The emitting surface velocity 𝑣𝑟 at a certain frequency 𝑤 are direct output of the multibody simulation and can be generated from the transient signal of the surface nodes by applying a Fast Fourier Transformation (FFT). P0 is defined as a base power 
	𝑃0=1∗10−12[𝑊]
	The sound pressure level can then be calculated from
	𝐿𝑃𝑣=10∗𝑙𝑔𝑃𝑣𝑃0[𝑑𝐵]
	Applying this simplified assumption to a mean velocity of all virtual accelerometers, as shown in Table 5, a negative shift of the bevel gear about 0.1 mm leads to a drop of the emitted sound pressure of 2.0 dB.
	Table 5 – Sound pressure level vs. pinion offset
	5 Conclusions
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	The multibody model proposed in this study allows to assess the noise and vibration performance of an E-Axle with bevel gears as a function of the mounting distance (H). As expected, a significant reduction of the accelerations on a control point located on the housing, is observed for a specific mounting distance. A suitable tuning of the model by means of experimental validation is object of further study, to allow the realization of a virtual test bench for the optimization of the mounting distance. 
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